SULLIVAN

COLLEGE ALGEBRA

ELEVENTH EDITION

This page intentionally left blank

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page
Every Chapter Opener begins with ...			
Chapter-Opening Topic \& Project	Each chapter begins with a discussion of a topic of current interest and ends with a related project.	The Project lets you apply what you learned to solve a problem related to the topic.	414
Internet-Based Projects	The projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce.	The projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest.	516
Every Section begins with . .			
learning objectives 2	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your study by emphasizing what's most important and where to find it.	435
Sections contain...			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	435
Now Work the 'Are You Prepared?' Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	435,446
Now Work PROBLEMS	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	442,447
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	469
Exploration and Seeing the Concept	These graphing utility activities foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	430,455
In Words	These provide alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	452
\langle Calculus	These appear next to information essential for the study of calculus.	Pay attention-if you spend extra time now, you'll do better later!	$\begin{array}{r} 210, \\ 419,442 \end{array}$
SHOWCASE EXAMPLES	These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is used.	381
Model It! Examples and Problems	These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple headings.	It is rare for a problem to come in the form "Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models to find a solution to the problem.	459,488
NEW! Need to Review?	These margin notes provide a just-intime reminder of a concept needed now, but covered in an earlier section of the book. Each note is backreferenced to the chapter, section and page where the concept was originally discussed.	Sometimes as you read, you encounter a word or concept you know you've seen before, but don't remember exactly what it means. This feature will point you to where you first learned the word or concept. A quick review now will help you see the connection to what you are learning for the first time and make remembering easier the next time.	428

Practice "Work the Problems"

Feature	Description	Benefit	Page
'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	452,460
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank, Multiple-Choice and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	446
Skill Building	Correlated with section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample opportunity to do so.	446-448
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also allow you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	449-451
NEW! Challenge Problems	These problems have been added in most sections and appear at the end of the Application and Extensions exercises. They are intended to be thought-provoking, requiring some ingenuity to solve.	Challenge problems can be used for group work or to challenge your students. Solutions to Challenge Problems are in the Annotated Instructor's Edition or in the Instructor's Solution Manual (online).	451
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	451
Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember.	451
Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	$\begin{array}{r} 444,447, \\ 448 \end{array}$
Review Exercises	Every chapter concludes with a comprehensive list of exercises to pratice. Use the list of objectives to determine the objective and examples that correspond to the problems.	Work these problems to ensure that you understand all the skills and concepts of the chapter. Think of it as a comprehensive review of the chapter.	511-514

Review "Study for Quizzes and Tests"

Feature	Description	Benefit	Page
The Chapter Review at the end of each chapter contains . .			
Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	509-510
You Should Be Able to ...	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and work through the objective listed and try again.	510-511
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	511-514
Chapter Test	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the Chapter Test Prep Video.	514
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.	These problem sets are really important. Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.	515
Chapter Projects	The Chapter Projects apply to what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Chapter Projects give you an opportunity to use what you've learned in the chapter to the opening topic. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way to learn math.	516
Internet-Based Projects	In selected chapters, a Web-based project is given.	These projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest by using the Internet to research and collect data.	516

Dedicated to the memory of Mary

College Algebra

Eleventh Edition

Michael Sullivan

Chicago State University

Director, Portfolio Management: Anne Kelly
Senior Portfolio Management Analyst: Dawn Murrin
Portfolio Management Administrator: Joseph Colella
Manager, Courseware QA: Mary Durnwald
VP, Production \& Digital Studio: Ruth Berry
Manager Producer: Vicki Dreyfus
Associate Producer: Stacey Miller
Manager, Content Development: Kristina Evans
Senior Content Developer: Megan M. Burns
Managing Producer: Scott Disanno
Content Producer: Peggy McMahon
Product Marketing Director: Erin Kelly

Product Marketer for Precalculus: Stacey Sveum
Product Marketing Assistant: Shannon McCormack
Field Marketing Manager: Peggy Lucas
Senior Publishing Services Analyst, Author Support: Joe Vetere
Manager, Rights/ Permissions: Gina Cheselka
Manager Design: Blair Brown
Manufacturing Buyer: Carol Melville, LSC Communications
Cover Illustration: Tamara Newnam
Cover Design: Jerilyn Bockorick, Pearson CSC
Full Service Vendor: Pearson, CSC
Full Service Project Management: Pearson CSC, Rose Kernan
Composition: Pearson CSC

Copyright © 2020, 2016, 2012 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030.
All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Attributions of third party content appear on page $\mathrm{C}-1$, which constitutes an extension of this copyright page.
MICROSOFT ${ }^{\circledR}$ AND WINDOWS ${ }^{\circledR}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A.AND OTHER COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE,TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

PEARSON, ALWAYS LEARNING, and MYLAB ${ }^{\text {TM }}$ MATH are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

The student edition of this book has been cataloged by the Library of Congress as follows: Library of Congress Cataloging-in-Publication Data
Names: Sullivan, Michael, 1942- author.
Title: College algebra / Michael Sullivan (Chicago State University).
Description: Eleventh edition. | Hoboken, NJ : Pearson, [2020] | Includes index.
Identifiers: LCCN 2018060244 | ISBN 9780135163047
Subjects: LCSH: Algebra--Textbooks. | Algebra--Study and teaching (Higher)
Classification: LCC QA154.3 .S763 2020 | DDC 512.9--dc23 LC record available at https://lcen.loc.gov/2018060244

120

About the Cover:

The image on this book's cover was inspired by a talk given by Michael Sullivan III: Is Mathematical Talent Overrated?

The answer is yes. In mathematics, innate talent plays a much smaller role than grit and motivation as you work toward your goal. If you put in the time and hard work, you can succeed in your math course-just as an athlete must work to medal in their sport.

Contents

Three Distinct Series xiv
The Flagship Series XV
Preface to the Instructor xvi
Get the Most Out of MyLab Math xxi
Resources for Success xxii
Applications Index xxiv
R Review 1
R. 1 Real Numbers 2
Work with Sets • Classify Numbers • Evaluate Numerical Expressions - Work with Properties of Real Numbers
R. 2 Algebra Essentials 17
Graph Inequalities \bullet Find Distance on the Real Number Line • Evaluate Algebraic Expressions • Determine the Domain of a Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents • Use Scientific Notation
R. 3 Geometry Essentials 30
Use the Pythagorean Theorem and Its Converse - Know Geometry Formulas • Understand Congruent Triangles and Similar Triangles
R. 4 Polynomials 39
Recognize Monomials • Recognize Polynomials • Add and Subtract Polynomials

- Multiply Polynomials • Know Formulas for Special Products • Divide Polynomials Using Long Division • Work with Polynomials in Two Variables
R. 5 Factoring Polynomials 49
Factor the Difference of Two Squares and the Sum and Difference of Two Cubes • Factor Perfect Squares • Factor a Second-Degree
Polynomial: $x^{2}+B x+C \bullet$ Factor by Grouping \bullet Factor a Second-Degree Polynomial: $A x^{2}+B x+C, A \neq 1 \bullet$ Complete the Square
R. 6 Synthetic Division 57
Divide Polynomials Using Synthetic Division
R. 7 Rational Expressions 61
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
R. 8 nth Roots; Rational Exponents 72
Work with nth Roots • Simplify Radicals • Rationalize Denominators and Numerators • Simplify Expressions with Rational Exponents
1 Equations and Inequalities 81
1.1 Linear Equations 82
Solve a Linear Equation - Solve Equations That Lead to Linear Equations
- Solve Problems That Can Be Modeled by Linear Equations
1.2 Quadratic Equations 92
Solve a Quadratic Equation by Factoring • Solve a Quadratic Equation Using the Square Root Method • Solve a Quadratic Equation by Completing the Square • Solve a Quadratic Equation Using the Quadratic Formula - Solve Problems That Can Be Modeled by Quadratic Equations
1.3 Complex Numbers; Quadratic Equations in the Complex Number System 104
Add, Subtract, Multiply, and Divide Complex Numbers • Solve Quadratic Equations in the Complex Number System
1.4 Radical Equations; Equations Quadratic in Form; Factorable Equations 113
Solve Radical Equations • Solve Equations Quadratic in Form • Solve Equations by Factoring
1.5 Solving Inequalities 119
Use Interval Notation • Use Properties of Inequalities • Solve Inequalities - Solve Combined Inequalities
1.6 Equations and Inequalities Involving Absolute Value 130
Solve Equations Involving Absolute Value • Solve Inequalities Involving Absolute Value
1.7 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications 134
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems • Solve Constant Rate Job Problems
Chapter Review 144
Chapter Test 147
Chapter Projects 147
2 Graphs 149
2.1 The Distance and Midpoint Formulas 150
Use the Distance Formula • Use the Midpoint Formula
2.2 Graphs of Equations in Two Variables; Intercepts; Symmetry 158
Graph Equations by Plotting Points • Find Intercepts from a Graph
- Find Intercepts from an Equation - Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin • Know How to Graph Key Equations
2.3 Lines 169
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope •Find the Equation of a Vertical Line - Use the Point-Slope Form of a Line; Identify Horizontal Lines • Use the Slope-Intercept Form of a Line • Find an Equation of a Line Given Two Points • Graph Lines Written in General Form Using Intercepts •Find Equations of Parallel Lines •Find Equations of Perpendicular Lines
2.4 Circles 185
Write the Standard Form of the Equation of a Circle • Graph a Circle - Work with the General Form of the Equation of a Circle
2.5 Variation 191
Construct a Model Using Direct Variation • Construct a Model Using Inverse Variation - Construct a Model Using Joint Variation
Chapter Review 197
Chapter Test 200
Cumulative Review 200
Chapter Project 201
3 Functions and Their Graphs 202
3.1 Functions 203
Describe a Relation • Determine Whether a Relation Represents a Function
- Use Function Notation; Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
3.2 The Graph of a Function 219
Identify the Graph of a Function • Obtain Information from or about the Graph of a Function
3.3 Properties of Functions 229
Identify Even and Odd Functions from a Graph • Identify Even and Odd Functions from an Equation • Use a Graph to Determine Where a Function Is Increasing, Decreasing, or Constant • Use a Graph to Locate Local Maxima and Local Minima - Use a Graph to Locate the Absolute Maximum and the Absolute Minimum • Use a Graphing Utility to Approximate Local Maxima and Local Minima and to Determine Where a Function Is Increasing or Decreasing • Find the Average Rate of Change of a Function
3.4 Library of Functions; Piecewise-defined Functions 242
Graph the Functions Listed in the Library of Functions - Analyze a Piecewise-defined Function
3.5 Graphing Techniques: Transformations 254
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
3.6 Mathematical Models: Building Functions 267
Build and Analyze Functions
Chapter Review 273
Chapter Test 277
Cumulative Review 278
Chapter Projects 278
4 Linear and Quadratic Functions 280
4.1 Properties of Linear Functions and Linear Models 281
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions \bullet Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
4.2 Building Linear Models from Data 291
Draw and Interpret Scatter Plots. - Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
4.3 Quadratic Functions and Their Properties 299
Graph a Quadratic Function Using Transformations •Identify the Vertex and Axis of Symmetry of a Parabola - Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point \bullet Find the Maximum or Minimum Value of a Quadratic Function
4.4 Building Quadratic Models from Verbal Descriptions and from Data 312
Build Quadratic Models from Verbal Descriptions • Build Quadratic Models from Data
4.5 Inequalities Involving Quadratic Functions 321
Solve Inequalities Involving a Quadratic Function
Chapter Review 325
Chapter Test 327
Cumulative Review 328
Chapter Projects 329
5 Polynomial and Rational Functions 330
5.1 Polynomial Functions 331
Identify Polynomial Functions and Their Degree • Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity
5.2 Graphing Polynomial Functions; Models 346
Graph a Polynomial Function • Graph a Polynomial Function Using a Graphing Utility • Build Cubic Models from Data
5.3 Properties of Rational Functions 354
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find a Horizontal or an Oblique Asymptote of a Rational Function
5.4 The Graph of a Rational Function 365
Graph a Rational Function • Solve Applied Problems Involving Rational Functions
5.5 Polynomial and Rational Inequalities 380
Solve Polynomial Inequalities • Solve Rational Inequalities
5.6 The Real Zeros of a Polynomial Function 387
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function • Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value of Theorem
5.7 Complex Zeros; Fundamental Theorem of Algebra 401
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
Chapter Review 408
Chapter Test 411
Cumulative Review 412
Chapter Projects 413
6 Exponential and Logarithmic Functions 414
6.1 Composite Functions 415
Form a Composite Function • Find the Domain of a Composite Function
6.2 One-to-One functions; Inverse functions 423
Determine Whether a Function Is One-to-One - Obtain the Graph of the Inverse Function from the Graph of a One-to-One Function • Verify an Inverse Function • Find the Inverse of a Function Defined by an Equation
6.3 Exponential Functions 435
Evaluate Exponential Functions • Graph Exponential Functions
- Define the Number $e \bullet$ Solve Exponential Equations
6.4 Logarithmic Functions
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function • Graph Logarithmic Functions • Solve Logarithmic Equations452
6.5 Properties of Logarithms 465
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate Logarithms Whose Base Is Neither 10 Nor e
6.6 Logarithmic and Exponential Equations 474
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
6.7 Financial Models 481
Determine the Future Value of a Lump Sum of Money • Calculate Effective Rates of Return - Determine the Present Value of a Lump Sum of Money
- Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
6.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 491
Model Populations That Obey the Law of Uninhibited Growth
- Model Populations That Obey the Law of Uninhibited Decay
- Use Newton's Law of Cooling • Use Logistic Models
6.9 Building Exponential, Logarithmic, and Logistic Models from Data 502
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 509
Chapter Test 514
Cumulative Review 515
Chapter Projects 516Analytic Geometry517
7.1 Conics 518
Know the Names of the Conics
7.2 The Parabola 519
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
7.3 The Ellipse 528
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
7.4 The Hyperbola 538
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
Chapter Review 551
Chapter Test 552
Cumulative Review 553
Chapter Projects 553

8.1 Systems of Linear Equations: Substitution and Elimination
 Solve Systems of Equations by Substitution • Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables

8.2 Systems of Linear Equations: Matrices 570
Write the Augmented Matrix of a System of Linear Equations • Write the System of Equations from the Augmented Matrix • Perform Row Operations on a Matrix • Solve a System of Linear Equations Using Matrices
8.3 Systems of Linear Equations: Determinants 584
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
8.4 Matrix Algebra 595
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix

- Solve a System of Linear Equations Using an Inverse Matrix
8.5 Partial Fraction Decomposition 612
Decompose $\frac{P}{Q}$ Where Q Has Only Nonrepeated Linear Factors
- Decompose $\frac{P}{Q}$ Where Q Has Repeated Linear Factors • Decompose $\frac{P}{Q}$ Where Q Has a Nonrepeated Irreducible Quadratic Factor \bullet Decompose $\frac{P}{Q}$
Where Q Has a Repeated Irreducible Quadratic Factor
8.6 Systems of Nonlinear Equations 621
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
8.7 Systems of Inequalities 630
Graph an Inequality • Graph a System of Inequalities
8.8 Linear Programming 637
Set Up a Linear Programming Problem • Solve a Linear Programming Problem
Chapter Review 645
Chapter Test 648
Cumulative Review 649
Chapter Projects 650
9 Sequences; Induction; the Binomial Theorem 651
9.1 Sequences 652
List the First Several Terms of a Sequence • List the Terms of a Sequence Defined by a Recursive Formula • Use Summation Notation •Find the Sum of a Sequence
9.2 Arithmetic Sequences 662
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence \bullet Find the Sum of an Arithmetic Sequence
9.3 Geometric Sequences; Geometric Series 669
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence - Find the Sum of a Geometric Sequence
- Determine Whether a Geometric Series Converges or Diverges - Solve Annuity Problems
9.4 Mathematical Induction 681
Prove Statements Using Mathematical Induction
9.5 The Binomial Theorem 685
Evaluate $\binom{n}{j}$ • Use the Binomial Theorem
Chapter Review 691
Chapter Test 694
Cumulative Review 694
Chapter Projects 695
10 Counting and Probability 696
10.1 Counting 697
Find All the Subsets of a Set • Count the Number of Elements in a Set
- Solve Counting Problems Using the Multiplication Principle
10.2 Permutations and Combinations 702
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
10.3 Probability 711
Construct Probability Models - Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 721
Chapter Test 723
Cumulative Review 724
Chapter Projects 724
Appendix Graphing Utilities A1
A. 1 The Viewing Rectangle A1
A. 2 Using a Graphing Utility to Graph Equations A3
A. 3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry A5
A. 4 Using a Graphing Utility to Solve Equations A6
A. 5 Square Screens A8
A. 6 Using a Graphing Utility to Graph Inequalities A9
A. 7 Using a Graphing Utility to Solve Systems of Linear Equations A9
Answers AN1
Photo Credits C1
Subject Index I1

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal-to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Flagship Series, Eleventh Edition

The Flagship Series is the most traditional in approach yet modern in its treatment of precalculus mathematics. In each text, needed review material is included, and is referenced when it is used. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, Precalculus.

Enhanced with Graphing Utilities Series, Seventh Edition

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Many examples show solutions using algebra side-by-side with graphing techniques. Using technology, the approach to solving certain problems differs from the Flagship Series, while the emphasis on understanding concepts and building strong skills is maintained: College Algebra, Algebra \& Trigonometry, Precalculus.

Concepts through Functions Series, Fourth Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. The approach supports the Rule of Four, which states that functions can be represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Flagship Series

College Algebra, Eleventh Edition

This text provides a contemporary approach to college algebra, with three chapters of review material preceding the chapters on functions. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry, Eleventh Edition

This text contains all the material in College Algebra, but also develops the trigonometric functions using a right triangle approach and shows how it relates to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus, Eleventh Edition

This text contains one review chapter before covering the traditional precalculus topics of polynomial, rational, exponential, and logarithmic functions and their graphs. The trigonometric functions are introduced using a unit circle approach and showing how it relates to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane and in space, including the dot and cross products, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Trigonometry: a Unit Circle Approach, Eleventh Edition

This text, designed for stand-alone courses in trigonometry, develops the trigonometric functions using a unit circle approach and shows how it relates to the right triangle approach. Vectors in the plane and in space, including the dot and cross products, are presented. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Preface to the Instructor

As a professor of mathematics at an urban public university for 35 years, I understand the varied needs of college algebra students. Students range from being underprepared with little mathematical background and a fear of mathematics, to being highly prepared and motivated. For some, this is their final course in mathematics. For others, it is preparation for future mathematics courses. I have written this text with both groups in mind.

A tremendous benefit of authoring a successful series is the broad-based feedback I receive from instructors. and students who have used previous editions. I am sincerely grateful for their support. Virtually every change to this edition is the result of their thoughtful comments and suggestions. I hope that I have been able to take their ideas and, building upon a successful foundation of the tenth edition, make this series an even better learning and teaching tool for students and instructors.

Features in the Eleventh Edition

A descriptive list of the many special features of College Algebra can be found on the endpapers in the front of this text. This list places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review it and to discuss it with your students at the beginning of your course. My experience has been that when students use these features, they are more successful in the course.

- Updated! Retain Your Knowledge Problems These problems, which were new to the previous edition, are based on the article "To Retain New Learning, Do the Math," published in the Edurati Review. In this article, Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." The Retain Your Knowledge problems were so well received that they have been expanded in this edition. Moreover, while the focus remains to help students maintain their skills, in most sections, problems were chosen that preview skills required to succeed in subsequent sections or in calculus. These are easily identified by the calculus icon (\varangle). All answers to Retain Your Knowledge problems are given in the back of the text and all are assignable in MyLab Math.
- Guided Lecture Notes Ideal for online, emporium/ redesign courses, inverted classrooms, or traditional lecture classrooms. These lecture notes help students take thorough, organized, and understandable notes as they watch the Author in Action videos. They ask students to complete definitions, procedures, and examples based on the content of the videos and text. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or property. Therefore, many
sections will have an exploration activity to motivate student learning. These explorations introduce the topic and/or connect it to either a real-world application or a previous section. For example, when the vertical-line test is discussed in Section 3.2, after the theorem statement, the notes ask the students to explain why the vertical-line test works by using the definition of a function. This challenge helps students process the information at a higher level of understanding.
- Illustrations Many of the figures have captions to help connect the illustrations to the explanations in the body of the text.
- Graphing Utility Screen Captures In several instances we have added Desmos screen captures along with the TI-84 Plus C screen captures. These updated screen captures provide alternate ways of visualizing concepts and making connections between equations, data and graphs in full color.
- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many of these projects are new requiring the student to research information online in order to solve problems.
- Exercise Sets The exercises in the text have been reviewed and analyzed some have been removed, and new ones have been added. All time-sensitive problems have been updated to the most recent information available. The problem sets remain classified according to purpose.

The 'Are You Prepared?' problems have been improved to better serve their purpose as a just-in-time review of concepts that the student will need to apply in the upcoming section.

The Concepts and Vocabulary problems have been expanded to cover each objective of the section. These multiple-choice, fill-in-the-blank, and True/False exercises have been written to also serve as reading quizzes.

Skill Building problems develop the student's computational skills with a large selection of exercises that are directly related to the objectives of the section. Mixed Practice problems offer a comprehensive assessment of skills that relate to more than one objective. Often these require skills learned earlier in the course.

Applications and Extensions problems have been updated. Further, many new application-type exercises have been added, especially ones involving information and data drawn from sources the student will recognize, to improve relevance and timeliness.

At the end of Applications and Extensions, we have a collection of one or more Challenge Problems. These problems, as the title suggests, are intended to be thought-provoking, requiring some ingenuity to solve. They can be used for group work or to challenge students. At the end of the Annotated Instructor's

Edition and in the online Instructor's Solutions Manual, we have provided solutions to all these problems.

The Explaining Concepts: Discussion and Writing exercises provide opportunity for classroom discussion and group projects.

Updated! Retain Your Knowledge has been improved and expanded. The problems are based on material learned earlier in the course. They serve to keep information that has already been learned "fresh" in the mind of the student. Answers to all these problems appear in the Student Edition.

Need to Review? These margin notes provide a just-in-time reminder of a concept needed now, but covered in an earlier section of the book. Each note includes a reference to the chapter, section and page where the concept was originally discussed.

Content Changes to the $11^{\text {th }}$ edition

- Challenge Problems have been added in most sections at the end of the Application and Extensions exercises. Challenge Problems are intended to be thought-provoking problems that require some ingenuity to solve. They can be used to challenge students or for group work. Solutions to Challenge Problems are at available in the Annotated Instructor's Edition and the online Instructors Solutions Manual.
- Need to Review? These margin notes provide a just-in-time review for a concept needed now, but covered in an earlier section of the book. Each note is back-referenced to the chapter, section and page where the concept was originally discussed.
- Additional Retain Your Knowledge exercises, whose purpose is to keep learned material fresh in a student's mind, have been added to each section. Many of these new problems preview skills required for calculus or for concepts needed in subsequent sections.
- Desmos screen captures have been added throughout the text. This is done to recognize that graphing technology expands beyond graphing calculators.
- Examples and exercises throughout the text have been augmented to reflect a broader selection of STEM applications.
- Concepts and Vocabulary exercises have been expanded to cover each objective of a section.
- Skill building exercises have been expanded to assess a wider range of difficulty.
- Applied problems and those based on real data have been updated where appropriate.

Chapter R

- Section R. 8 Objective 3 now includes rationalizing the numerator
- NEW Example 6 Rationalizing Numerators
- Problems 69-76 provide practice.
- Section R. 8 Exercises now include more practice in simplifying radicals

Chapter 1

- NEW Section 1.2 Objective 2 Solve a Quadratic Equation Using the Square Root Method.

Chapter 2

- NEW Section 2.2 Example 9 Testing an Equation for Symmetry
- Section 2.3 has been reorganized to treat the slope-intercept form of the equation of a line before finding an equation of a line using two points.

Chapter 3

- NEW Section 3.1 Objective 1 Describe a Relation
- NEW Section 3.2 Example 4 Expending Energy
- NEW Section 3.4 Example 4 Analyzing a Piecewise-defined Function
- NEW Example 1 Describing a Relation demonstrates using the Rule of Four to express a relation numerically, as a mapping, and graphically given a verbal description.

Chapter 4

- Section 4.3 introduces the concept of concavity for a quadratic function
- NEW Section 4.3 Example 3 Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts
- Section 4.3 Example 8 Analyzing the Motion of a Projectile (formerly in Section 4.4)
- NEW Section 4.4 Example 4 Fitting a Quadratic Function to Data

Chapter 5

- Section 5.1 has been revised and split into two sections: - 5.1 Polynomial Functions
- 5.2 Graphing Polynomial Functions; Models
- NEW Section 5.2 Example 2 Graphing a Polynomial Function (a 4th degree polynomial function)

Chapter 6

- Section 6.2 now finds and verifies inverse functions analytically and graphically

Chapter 8

- NEW Section 8.5 Example 1 Identifying Proper and Improper Rational Expressions

Using the Eleventh Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in an College Algebra course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the figure below) and can be omitted without loss of continuity.

Chapter R Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Equations and Inequalities

Primarily a review of Intermediate Algebra topics, this material is a prerequisite for later topics. The coverage of complex numbers and quadratic equations with a negative discriminant is optional and may be postponed or skipped entirely without loss of continuity.

Chapter 2 Graphs
This chapter lays the foundation for functions. Section 2.5 is optional.

Chapter 3 Functions and Their Graphs

Perhaps the most important chapter. Section 3.6 is optional.

Chapter 4 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 4.2 and 4.4 may be omitted without loss of continuity.

Chapter 5 Polynomial and Rational Functions
Topic selection depends on your syllabus.

Chapter 6 Exponential and Logarithmic Functions

Sections 6.1-6.6 follow in sequence. Sections 6.7, 6.8, and 6.9 are optional.

Chapter 7 Analytic Geometry

Sections 7.1-7.4 follow in sequence.

Chapter 8 Systems of Equations and Inequalities

 Sections 8.2-8.7 may be covered in any order, but each requires Section 8.1. Section 8.8 requires Section 8.7.
Chapter 9 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 9.1-9.3; Section 9.4; and Section 9.5.

Chapter 10 Counting and Probability
The sections follow in sequence.

Acknowledgments

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this text and series to me. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Dawn Murrin, for her unmatched talent at getting the details right; Joseph Colella for always getting the reviews and pages to me on time; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling liaison between the compositor and author; Peggy Lucas and

Stacey Sveum for their genuine interest in marketing this text. Marcia Horton for her continued support and genuine interest; Paul Corey for his leadership and commitment to excellence; and the Pearson Sales team, for their continued confidence and personal support of Sullivan texts.

- Accuracy checkers: C. Brad Davis who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals; and Kathleen Miranda and Pamela Trim for accuracy checking answers.

Finally, I offer my grateful thanks to the dedicated users and reviewers of my texts, whose collective insights form the backbone of each textbook revision.

James Africh, College of DuPage
Steve Agronsky, Cal Poly State University
Gererdo Aladro, Florida International University
Grant Alexander, Joliet Junior College Dave Anderson, South Suburban College
Wes Anderson, Northwest Vista College Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of Wisconsin-Milwaukee

Adel Arshaghi, Center for Educational Merit Carolyn Autray, University of West Georgia Agnes Azzolino, Middlesex County College Wilson P. Banks, Illinois State University Sudeshna Basu, Howard University Timothy Bayer, Virginia Western CC Dale R. Bedgood, East Texas State University Beth Beno, South Suburban College Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College William H. Beyer, University of Akron

Annette Blackwelder, Florida State University Richelle Blair, Lakeland Community College Kevin Bodden, Lewis and Clark College Jeffrey Boerner, University of Wisconsin-Stout
Connie Booker, Owensboro Community and Technical College
Barry Booten, Florida Atlantic University
Laurie Boudreaux, Nicholls State University Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College

Tim Bremer, Broome Community College Tim Britt, Jackson State Community College Holly Broesamle, Oakland CC-Auburn Hills Michael Brook, University of Delaware Timothy Brown, Central Washington University
Joanne Brunner, Joliet Junior College Warren Burch, Brevard Community College Mary Butler, Lincoln Public Schools Melanie Butler, West Virginia University Jim Butterbach, Joliet Junior College Roberto Cabezas, Miami Dade College William J. Cable, University of Wisconsin-Stevens Point
Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College Amy Collins, Northwest Vista College Alicia Collins, Mesa Community College Nelson Collins, Joliet Junior College Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College Denise Corbett, East Carolina University Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University Donna Costello, Plano Senior High School Rebecca Courter, Pasadena City College Garrett Cox, The University of Texas at San Antonio
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University
Faye Dang, Joliet Junior College
Antonio David, Del Mar College
Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of WisconsinPlatteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza, Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
Arash Farahmand, Skyline College
Said Fariabli, San Antonio College
W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University Robert Frank, Westmoreland County
Community College

Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley
Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
Igor Halfin, University of Texas-San Antonio
James E. Hall, University of WisconsinMadison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School
Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools
Rachael Kenney, North Carolina State University
Penelope Kirby, Florida State University
John B. Klassen, North Idaho College
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham

Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University

Darren Lacoste, Valencia College-West Campus
Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Wayne Lee, St. Phillips CC
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
Angela McNulty, Joliet Junior College
Lisa Meads, College of the Albemarle
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Ruby Martinez, San Antonio College
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma
James Maxwell, Oklahoma State University-Stillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College

Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community

College

Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College
Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College
Traci Reed, St. Johns River State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
Dennis C. Runde, Manatee Community College
Paul Runnion, Missouri University of Science and Technology
Amit Saini, University of Nevada-Reno
Laura Salazar, Northwest Vista College

Alan Saleski, Loyola University of Chicago Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Zachery Sharon, University of Texas at San Antonio
Joshua Shelor, Virginia Western CC
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South
Robin Steinberg, Pima Community College Neil Stephens, Hinsdale South High School Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School

Richard J. Tondra, Iowa State University Florentina Tone, University of West Florida Suzanne Topp, Salt Lake Community College Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
David Tseng, Miami Dade College, Kendall Campus
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L.Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University
Hayat Weiss, Middlesex Community College
Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
Rob Wylie, Carl Albert State College Aletheia Zambesi, University of West Florida George Zazi, Chicago State University Loris Zucca, Lone Star College-Kingwood Steve Zuro, Joliet Junior College

Get the Most Out of MyLab Math π Int|

Math courses are continuously evolving to help today's students succeed. It's more challenging than ever to support students with a wide range of backgrounds, learner styles, and math anxieties. The flexibility to build a course that fits instructors' individual course formats-with a variety of content options and multimedia resources all in one place-has made MyLab Math the market-leading solution for teaching and learning mathematics since its inception.

Preparedness

One of the biggest challenges in College Algebra, Trigonometry, and Precalculus is making sure students are adequately prepared with prerequisite knowledge. For a student, having the essential algebra skills upfront in this course can dramatically increase success.

- MyLab Math with Integrated Review can be used in corequisite courses, or simply to help students who enter without a full understanding of prerequisite skills and concepts. Integrated Review provides videos on review topics with a corresponding worksheet, along with premade, assignable skills-check quizzes and personalized review homework assignments. Integrated Review is now available within all Sullivan 11th Edition MyLab Math courses.

Resources for Success

 Pearson MyLabMyLab Math Online Course for College Algebra, 11th Edition by Michael Sullivan (access code required)
MyLab ${ }^{\text {TM }}$ Math is tightly integrated with each author's style, offering a range of author-created multimedia resources, so your students have a consistent experience.

Video Program and Resources

Author in Action Videos are actual classroom lectures by Michael Sullivan III with fully worked-out examples.

- Video assessment questions are available to assign in MyLab Math for key videos.
- Updated! The corresponding Guided Lecture Notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos.

EXAMPLE

Finding the Exact Value of a Logarithmic Expression

Guided Visualizations

New! Guided Visualizations, created in GeoGebra by Michael Sullivan III, bring mathematical concepts to life, helping students visualize the concept through directed exploration and purposeful manipulation. Assignable in MyLab Math with assessment questions to check students' conceptual understanding.

Retain Your Knowledge Exercises

Updated! Retain Your Knowledge
Exercises, assignable in MyLab Math, improve students' recall of concepts learned earlier in the course. New for the 11th Edition, additional exercises will be included that will have an emphasis on content that students will build upon in the immediate upcoming section.

Resources for Success

Instructor Resources

Online resources can be downloaded from www.pearson.com, or hardcopy resources can be ordered from your sales representative.

Annotated Instructor's Edition

College Algebra, $11^{\text {th }}$ Edition
ISBN - 013516320X / 9780135163207
Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor's Solutions Manual

ISBN - 0135163722 / 9780135163726
Includes fully worked solutions to all exercises in the text.

Learning Catalytics Question Library

Questions written by Michael Sullivan III are available within MyLab Math to deliver through Learning Catalytics to engage students in your course.

Powerpoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides correlate to the textbook.

Mini Lecture Notes

Includes additional examples and helpful teaching tips, by section.

Testgen ${ }^{\circledR}$

TestGen (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to enhance student success.

Lecture Video

Author in Action videos are actual classroom lectures with fully worked out examples presented by Michael Sullivan, III. All video is assignable within MyLab Math.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the text. These are available in MyLab Math and on YouTube.

Student's Solutions Manual

ISBN - 013516317X / 9780135163177
Provides detailed worked-out solutions to oddnumbered exercises.

Guided Lecture Notes

ISBN - 0135163188 / 9780135163184
These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how/why of important concepts through explorations and activities. The Guided Lecture Notes are available as PDF's and customizable Word files in MyLab Math. They can also be packaged with the text and the MyLab Math access code.

Algebra Review

ISBN: 0131480065 / 9780131480063
Four printed chapters of Intermediate Algebra review available. Perfect for a corequisite course or for individual review.

Applications Index

absolute maximum/minimum in, 233, 551
area under a curve, 267,612
average rate of change in, 236, 353, 473, 528,570, 662
composite functions in, 419
concavity test, 311,644
critical numbers, 662
difference quotient in, $210,217,267,324$,
$346,451,473,490,538,629$
discontinuous functions, 379
e^{x} in, 443, 661
expression as single quotient in, 77
expressions with rational exponents in, 77
factoring in, $53,57,80,465,570,644$
functions approximated by polynomial
functions in, 353
increasing/decreasing functions in, 231, 311, 346, 637
Intermediate Value Theorem, 396, 637
inverse functions, 551
local maxima/minima in, 233, 291, 501
partial fraction decomposition, 668, 685,
702, 711
perpendicular lines, 595, 620
quadratic equations in, 99-100
rationalizing numerators, 595
reducing expression to lowest terms in, 71
secant line in, 236, 291, 490
second derivative, 702
Simpson's rule, 320
trigonometric expressions and functions, 685

Acoustics

amplifying sound, 512
loudness of sound, 463, 514
whispering galleries, 536

Aeronautics

sonic boom, 550

Agriculture

farm management, 643
farm workers in U.S., 500
field enclosure, 628
milk production, 507
minimizing cost, 643
watering a field, 102

Air travel

distance between two planes, 269
parking at O'Hare International
Airport, 251

Archaeology

age of ancient tools, 493-494
age of fossil, 499
age of tree, 499
date of prehistoric man's death, 513
xxiv

Architecture

brick staircase, 668, 693
Burj Khalifa building, 31
floor design, 666, 693
football stadium seating, 667
mosaic design, 668, 693
Norman window, 37,318
parabolic arch, 318
racetrack design, 537
special window, 318,326
stadium construction, 668
vertically circular building, 190
window design, 318
window dimensions, 102

Art

framing a painting, 146

Astronomy

distance from Earth to its moon, 29
distances of planets from Sun, 661
light-year, 29
planetary orbits, 537

Aviation

orbital launches, 567

Biology

alcohol and driving, 459, 464
bacterial growth, 492-493, 506
E-coli, 240, 282
blood types, 701
bone length, 326-327
cricket chirp rate and temperature, 319
healing of wounds, 449, 463
maternal age versus Down syndrome, 297
yeast biomass as function of time, 505

Business

advertising, 183, 298, 327
automobile production, 421, 583
blending coffee, 141
candy bar size, 103
checkout lines, 720
clothing store, 723
commissions, 326
cookie orders, 648
copying machines, 146
cost
of can, 375,378
of commodity, 421
of manufacturing, $29,141,386,636$
marginal, 311, 326
minimizing, 326, 643, 648
of printing, 350-351
of production, 240, 421, 610, 648
of transporting goods, 252
cost equation, 182, 195
cost function, 290
customer wait times, 377
demand
for candy, 196
demand equation, 326, 412
depreciation, 414, 464
discount pricing, 91, 92, 422
drive-thru rate
at Burger King, 445
at Citibank, 449, 463
at McDonald's, 449-450
equipment depreciation, 678
expense computation, 142
farm workers in U.S., 500
inventory management, 272
Jiffy Lube's car arrival rate, 449, 463
managing a meat market, 643
milk production, 507
mixing candy, 141
mixing nuts, 141
orange juice production, 583
precision ball bearings, 29
presale orders, 568
price markup, 91
product design, 644
production scheduling, 643
product promotion, 183
profit, 610
maximizing, 641-642, 643-644
profit function, 218
rate of return on, 488
restaurant management, 568
revenue, 141, 311, 324, 327, 506
advertising, 508
airline, 644
of clothing store, 600
daily, 311
from digital music, 266
from football seating, 679
maximizing, 311, 317-318
monthly, 311
theater, 569
revenue equation, 195
RV rental, 327
salary, 422, 668
gross, 217
increases in, 678, 693
sales
commission on, 128
of movie theater ticket, $556,561,567$
net, 157
salvage value, 513
straight-line depreciation, 285-286, 289
supply and demand, 286-287, 289
tax, 386
theater attendance, 92
toy truck manufacturing, 636
transporting goods, 637
truck rentals, 182
unemployment, 723
wages
of car salesperson, 182
hourly, 89, 91

Carpentry. See also Construction

pitch, 184

Chemistry, 91

alpha particles, 550
decomposition reactions, 500
drug concentration, 377
gas laws, 196
mixing acids, 146
pH, 462
purity of gold, 142
radioactive decay, 499, 506-507, 513, 514, 644
radioactivity from Chernobyl, 500
salt solutions, $142,143,146$
self-catalytic chemical reaction, 311
sugar molecules, 142
volume of gas, 128

Combinatorics

airport codes, 703
binary codes, 723
birthday permutations, $705,710,717,721,723$
blouses and skirts combinations, 701
book arrangements, 710
box stacking, 709
code formation, 709
combination locks, 710
committee formation, 707, 709, 710, 723
Senate committees, 710
flag arrangement, 708, 723
gender composition of children in family, 714
letter codes, 703-704
license plate possibilities, 710, 723
lining up people, 704, 709
number formation, 701, 709, 710, 723
objects selection, 710
passwords, 710
seating arrangements, 723
shirts and ties combinations, 701
telephone numbers, 723
two-symbol codewords, 700
word formation, 708, 710, 723

Communications

data plan, 202, 227, 278-279
fake news, 133
installing cable TV, 271
phone charges, 289
satellite dish, 396, 527
social networking, 501, 507
spreading of rumors, 449, 463
tablet service, 251
texting speed, 378

Computers and computing

comparing tablets, 103
graphics, 611
households owning computers, 500
Internet searches, 112
laser printers, 142
three-click rule, 611
website design, 611
website map, 611
Word users, 500

Construction

of border around a garden, 103
of border around a pool, 103
of box, 99-100, 102-103, 628
closed, 276
open, 272
of brick staircase, 693
of can, 411
of coffee can, 143
of cylindrical tube, 628
of enclosures
around garden, 142
around pond, 142
maximizing area of, 314-315, 318, 326
of fencing, 314-315, 318, 326, 628
minimum cost for, 377
of flashlight, 527
of headlight, 527
installing cable TV, 271
patio dimensions, 103
of rain gutter, 318
of ramp
access ramp, 183
of rectangular field enclosure, 318
of stadium, 318, 668
of steel drum, 378
of swimming pool, 37,38
TV dish, 527
vent pipe installation, 537

Cryptography

matrices in, 611

Decorating

Christmas tree, 32

Demographics

birth rate
age of mother and, 320
of unmarried women, 311
diversity index, 462
living at home, 103
marital status, 702
mosquito colony growth, 499
population. See Population
rabbit colony growth, 660

Design

of box with minimum surface area, 378

Direction

of fireworks display, 549
of lightning strikes, 549

Distance

Bermuda Triangle, 38
bicycle riding, 228
of explosion, 550
height
of bouncing ball, 678, 693
of Great Pyramid of Cheops, 38
of Mt. Everest, 29
oil tank, 38
from home, 228
of hot-air balloon
from intersection, 156
from intersection, 271
limiting magnitude of telescope, 512
pendulum swings, 674,678
pool depth, 253
range of airplane, 143
of search and rescue, 146
sound to measure, 118-119
stopping, 218, 311, 433
of storm, 146
traveled by wheel, 37
between two moving vehicles, 156
toward intersection, 271
between two planes, 269
visibility of Gibb's Hill Lighthouse beam, 38
visual, 38
walking, 228

Economics

Consumer Price Index (CPI), 490
demand equations, 412
inflation, 489
IS-LM model in, 568
marginal propensity to consume, 679
multiplier, 679
national debt, 240
participation rate, 218
per capita federal debt, 489
poverty rates, 352
poverty threshold, 157
relative income of child, 611
unemployment, 723

Education

age distribution of community college, 724
college costs, 489,678
college tuition and fees, 513, 610
computing grades, 129
degrees awarded, 699
doctorates, 720
faculty composition, 721
fraternity purchase, 103
funding a college education, 513
GPA and work relationship, 103
grades, 91
learning curve, 450, 463
maximum level achieved, 650
median earnings and level of, 103
multiple-choice test, 710
spring break, 643
student loan
interest on, 610
true/false test, 709
video games and grade-point average, 297
Electricity, 91
cost of, 249
current in $R C$ circuit, 450
current in $R L$ circuit, 450, 463
impedance, 112
Kirchhoff's Rules, 569, 583
Ohm's law, 126
parallel circuits, 112
resistance in, 363
rates for, 129, 182
resistance, 69, 72, 196, 200, 363
voltage
foreign, 29
U.S., 29

Electronics. See also Computers and computing

microphones, 167

Energy

expended while walking, 222-223
nuclear power plant, 549
solar, 168, 527
thermostat control, 266

Engineering

bridges
Golden Gate, 315-316
parabolic arch, 326, 526-527
semielliptical arch, 536-537, 552
suspension, 318, 526
crushing load, 119
Gateway Arch (St. Louis), 527
grade
of mountain trail, 629
of road, 184
horsepower, 196
maximum weight supportable by pine, 193
safe load for a beam, 196
searchlight, 527, 552
tolerance, 133
whispering galleries, 406

Entertainment

Demon Roller Coaster customer rate, 450
theater revenues, 569

Environment

endangered species, 449
invasive species, 501
lake pollution control laws, 660
oil leakage, 421

Exercise, 129

heartbeats during, 283-284
Finance, 91. See also Investment(s)
balancing a checkbook, 29
bank balance comparison, 489
bills in wallet, 723
clothes shopping, 649
college costs, 489,678
computer system purchase, 488
consumer expenditures annually by age, 316-317
cost
of car, 91,182
of car rental, 252
of electricity, 249
of fast food, 568
minimizing, 326,377
of natural gas, 182, 252
of pizza, 92
of printing, 350-351
of towing car, 288
of transatlantic travel, 218, 226
cost equation, 195
cost function, 290
cost minimization, 311
credit cards
balance on, 620
debt, 660
interest on, 488
payment, 253, 660
depreciation, 449
of car, 464, 480, 516
discounts, 422
division of money, 88, 91
effective rate of interest, 485
electricity rates, 182
financial planning, 136-137,568,579-580,583
foreign exchange, 422
fraternity purchase, 103
funding a college education, 513
future value of money, 352
gross salary, 217
income
discretionary, 103
inheritance, 146
life cycle hypothesis, 319
loans, 141
car, 660
interest on, $81,136,146,147-148,610$
repayment of, 488
student, 146, 610
median earnings and level of education, 103
mortgages, 489
fees, 252
interest rates on, 489
payments, 192, 195, 199
second, 489
price appreciation of homes, 488
prices of fast food, 569
refunds, 568
revenue equation, 195
revenue maximization, 311, 313-314, 317-318
rich man's promise, 679
salary options, 680
sales commission, 128
saving
for a car, 488
for a home, 678
savings accounts interest, 488
selling price of a home, 201
sewer bills, 129
sinking fund, 678
taxes, 289
competitive balance, 289
federal income, 252, 422, 434
truck rentals, 241
used-car purchase, 488

Food and nutrition

animal, 644
calories, 92
candy, 296
color mix of candy, 723
cooler contents, 724
cooling time of pizza, 499
fast food, 568, 569
fat content, 129
Girl Scout cookies, 720
hospital diet, 569, 582
ice cream, 643
number of possible meals, 699-700
soda and hot dogs buying
combinations, 290
sodium content, 129
warming time of beer stein, 500

Forensic science

tibia length and height relationship, 465

Forestry

wood product classification, 498

Games

coin toss, 713
die rolling, 713, 714-715, 724
grains of wheat on a chess board, 679
lottery, 724-725
Gardens and gardening. See also Landscaping
border around, 103
enclosure for, 142

Geology

earthquakes, 464
geysers, 668

Geometry

balloon volume, 421
circle
area of, 141, 191
center of, 190, 191
circumference of, 28, 141, 191
equation of, 594
inscribed in square, 270
radius of, 92, 191, 627
collinear points, 594
cone volume, 196, 422
cube
length of edge of, 400
surface area of, 29
volume of, 29
cylinder
inscribing in cone, 271
inscribing in sphere, 271
volume of, 196, 422
Descartes's method of equal roots, 628
equation of line, 594
Pascal figures, 691
polygon
area of, 594
diagonals of, 104

Pythagorean Theorem, 102
rectangle
area of, 28, 217, 268-269, 276, 537
dimensions of, $92,102,146,627$
inscribed in circle, 270
inscribed in semicircle, 270
perimeter of, 28
semicircle inscribed in, 271
sphere
surface area of, 28
volume of, 28
square
area of, 37,141
diagonals of, 156, 157
perimeter of, 141
shading, 679
surface area
of balloon, 421
of cube, 29
of sphere, 28
tetrahedron, volume of, 594
triangle
area of, 28,594
equilateral, 28, 156, 157
inscribed in circle, 271
isosceles, 217, 627
Koch's snowflake, 679
medians of, 156
Pascal's, 660
perimeter of, 28
wire into geometric shapes, 270-271

Government

federal debt, 240
per capita, 489
federal income tax, 218, 252, 422, 434
federal tax withholding, 129
first-class mail, 253
Health. See also Exercise; Medicine
age versus total cholesterol, 508
elliptical trainer, 537
expenditures on, 218
ideal body weight, 433
life cycle hypothesis, 319
life expectancy, 128
Home improvement. See also Construction
painting a house, 569

Housing

apartment rental, 319
price appreciation of homes, 488
Investment(s), 88, 91, 141, 146
401(k), 678, 693
annuity, 675-676, 678
in bonds, 644
Treasuries, 583, 634, 636, 638
zero-coupon, 486, 489
in CDs, 485, 644
compound interest on, 481-482, 483, 484, 485, 488-489, 514
diversified, 569
dividing, 254
doubling of, 486, 489
effective rate of interest, 485
finance charges, 488
in fixed-income securities, 489,644
growth rate for, 488-489
IRA, 489, 675-676, 678
mutual fund growth over time, 502-503
return on, 488, 643, 644
savings account, 481-482
in stock
analyzing, 329
appreciation, 488
beta, 280, 329
NASDAQ stocks, 709
NYSE stocks, 709
portfolios of, 702
price of, 679
time to reach goal, 488, 490
tripling of, 487, 489

Landscaping. See also Gardens and gardening

pond enclosure, 326
project completion time, 143
rectangular pond border, 326
tree planting, 583

Law and law enforcement

motor vehicle thefts, 720
violent crimes, 218

Leisure and recreation

cable TV, 271
community skating rink, 277
Ferris wheel, 190
video games and grade-point average, 297

Mechanics, 91. See also Physics

Medicine. See also Health
age versus total cholesterol, 508
cancer
breast, 506
pancreatic, 449
drug concentration, 240, 377
drug medication, 449, 463
healing of wounds, 449,463
lithotripsy, 537
spreading of disease, 513-514

Meteorology

weather balloon height and atmospheric pressure, 504

Miscellaneous

banquet seating, 643
bending wire, 628
citrus ladders, 668
coffee container, 516
cross-sectional area of beam, 218, 226
curve fitting, 568, 582, 647
diameter of wire, 29
drafting error, 156
Droste Effect, 661
motor, 29
paper creases, 684
pet ownership, 720
surface area of balloon, 421
volume of balloon, 421
wire enclosure area, 270-271

Mixtures. See also Chemistry

blending coffees, 137-138, 141, 147, 636, 648
blending teas, 141
cement, 143
mixed nuts, $141,567,637,648$
mixing candy, 141
solutions, 568
water and antifreeze, 142, 191

Motion. See also Physics

of golf ball, 226
revolutions of circular disk, 37
tortoise and the hare race, 627
uniform, 138-139, 141

Motor vehicles

alcohol and driving, 459, 464
automobile production, 421, 583
average car speed, 143
brake repair with tune-up, 723
depreciation, 414
depreciation of, 464, 480, 516
with Global Positioning System (GPS), 513
loans for, 660
runaway car, 324
stopping distance, 218, 311, 433
theft of, 720
towing cost for car, 288
used-car purchase, 488

Music

revenues from, 266

Optics

intensity of light, 196
lamp shadow, 550
lensmaker's equation, 72
light obliterated through glass, 449
mirrors, 550, 661
reflecting telescope, 527
Pediatrics
height vs. head circumference, 433

Pharmacy

vitamin intake, 568, 583

Physics, 91

bouncing balls, 693
diameter of atom, 29
Doppler effect, 378
effect of elevation on weight, 226
falling objects, 195
force, 141
of attraction between two bodies, 195
of wind on a window, 194, 196
gravity, 363, 386
on Earth, 217, 434
on Jupiter, 218

xxviii Applications Index

heat loss, 193, 199
Hooke's Law, 290
horsepower, 196
intensity of light, 146, 196
kinetic energy, 141, 196
maximum weight supportable by pine, 193
missile trajectory, 329
Newton's law, 195
Ohm's law, 126
pendulum motion, 119, 674
period, 266, 434
simple pendulum, 195
pressure, 141, 196
projectile motion, 103, 267, 307, 310-311
artillery, 324
safe load for a beam, 196
sound to measure distance, 118-119
speed of sound, 133
stress of materials, 196
stretching a spring, 195
tension, 685
thrown object, 146
ball, 319, 324
uniform motion, 141, 143, 271
velocity down inclined planes, 80
vertically propelled object, 324
vibrating string, 195
wavelength of visible light, 29
weight, 196, 199
work, 141
Population. See also Demographics
bacteria, 451, 499, 506
decline in, 499
E-coli growth, 240, 282
of endangered species, 500-501
of fruit fly, 497
as function of age, 218
growth in, 499, 501
insect, 363, 499, 501
of trout, 660
of United States, 479, 507, 695
of world, 479, 507-508, 513, 651

Probability

of ball not being chosen, 377
of birthday shared by people in a room, 500
checkout lines, 720
classroom composition, 720
exponential, 445, 449, 463
of finding ideal mate, 464
household annual income, 720
Poisson, 449-450
"Price is Right" games, 720
standard normal density function, 267
of winning a lottery, 721

Psychometrics

IQ tests, 129

Pyrotechnics

fireworks display, 549

Rate. See also Speed
current of stream, 568
of emptying
fuel tanks, 146
oil tankers, 143
a pool, 143
of filling
a conical tank, 272
a tub, 143
speed
average, 143
of current, 141
of cyclist, 143
of motorboat, 141
of moving walkways, 141-142
of plane, 143
of sound, 133
of water use, 267

Real estate

commission, 128
housing prices, 411
mortgage loans, 489

Recreation

bungee jumping, 386
Demon Roller Coaster customer rate, 450
gambling, 720

Seismology

calibrating instruments, 552

Sequences. See also Combinatorics

ceramic tile floor design, 666
Drury Lane Theater, 667
football stadium seating, 667
seats in amphitheater, 667

Speed

of current, 648
as function of time, 228, 271
wind, 568

Sports

baseball, 710, 723
diamond, 156
Little League, 156
on-base percentage, 291-292
World Series, 710
basketball, 710
free throws, 225-226
granny shots, 225
biathlon, 143
bungee jumping, 386
exacta betting, 723
football, 142, 537
defensive squad, 710
field design, 103
seating revenue, 679
golf, 226, 508
Olympic heroes, 143
races, $142,146,625,627$
relay runners, 723
tennis, 142,353, 378

Statistics. See Probability Surveys

of appliance purchases, 701
data analysis, 698, 701
stock portfolios, 702
of summer session attendance, 701
of TV sets in a house, 720

Temperature

of air parcel, 668
body, 29, 133
conversion of, 290, 422, 434
cooling time of pizza, 499
cricket chirp rate and, 319
Fahrenheit from Celsius conversion, 87
measuring, 183
after midnight, 352
relationship between scales, 266
shelf life and, 241
of skillet, 513
warming time of beer stein, 500
wind chill factor, 513

Time

for beer stein to warm, 500
to go from an island to a town, 272
hours of daylight, 413
for pizza to cool, 499
for rescue at sea, 146

Travel. See also Air travel

drivers stopped by the police, 515
driving to school, 196
parking at O'Hare International
Airport, 251

Volume

of gasoline in tank, 80
of ice in skating rink, 277
of water in cone, 272

Weapons

artillery, 324
cannons, 329

Weather

atmospheric pressure, 449, 463
cooling air, 668
hurricanes, 297, 352
lightning and thunder, 146, 416-417, 419, 549
probability of rain, 716
relative humidity, 450
tornadoes, 296
wind chill, 253, 513

Work

constant rate jobs, 648
GPA and, 103
working together, 140, 142, 146

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry-your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this text, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't ... the text has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

I use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it) to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this text. Refer to "Prepare for Class," "Practice," and "Review" at the front of the text. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text.

Please do not hesitate to contact me through Pearson Education, with any questions, comments, or suggestions for improving this text. I look forward to hearing from you, and good luck with all of your studies.

Wichael Sullivan

This page intentionally left blank

Review

A Look Ahead $\boldsymbol{\Theta}$

Chapter R, as the title states, contains review material. Your instructor may choose to cover all or part of it as a regular chapter at the beginning of your course or later as a just-in-time review when the content is required. Regardless, when information in this chapter is needed, a specific reference to this chapter will be made so you can review.

Outline

R. 1 Real Numbers
R. 2 Algebra Essentials
R. 3 Geometry Essentials
R. 4 Polynomials
R. 5 Factoring Polynomials
R. 6 Synthetic Division
R. 7 Rational Expressions
R. 8 nth Roots; Rational Exponents

R. 1 Real Numbers

PREPARING FOR THIS TEXT Before getting started, read "To the Student" at the front of this text.
OBJECTIVES 1 Work with Sets (p. 2)
2 Classify Numbers (p. 4)
3 Evaluate Numerical Expressions (p. 8)
4 Work with Properties of Real Numbers (p. 9)

1 Work with Sets

A set is a well-defined collection of distinct objects. The objects of a set are called its elements. By well-defined, we mean that there is a rule that enables us to determine whether a given object is an element of the set. If a set has no elements, it is called the empty set, or null set, and is denoted by the symbol \varnothing.

For example, the set of digits consists of the collection of numbers $0,1,2,3,4$, $5,6,7,8$ and 9 . If we use the symbol D to denote the set of digits, then we can write

$$
D=\{0,1,2,3,4,5,6,7,8,9\}
$$

In this notation, the braces $\{\quad\}$ are used to enclose the objects, or elements, in the set. This method of denoting a set is called the roster method. A second way to denote a set is to use set-builder notation, where the set D of digits is written as

EXAMPLE 1 Using Set-builder Notation and the Roster Method

(a) $E=\{x \mid x$ is an even digit $\}=\{0,2,4,6,8\}$
(b) $O=\{x \mid x$ is an odd digit $\}=\{1,3,5,7,9\}$

Because the elements of a set are distinct, we never repeat elements. For example, we would never write $\{1,2,3,2\}$; the correct listing is $\{1,2,3\}$. Because a set is a collection, the order in which the elements are listed is immaterial. $\{1,2,3\},\{1,3,2\},\{2,1,3\}$, and so on, all represent the same set.

If every element of a set A is also an element of a set B, then A is a subset of B, which is denoted $A \subseteq B$. If two sets A and B have the same elements, then A equals B, which is denoted $A=B$.

For example, $\{1,2,3\} \subseteq\{1,2,3,4,5\}$ and $\{1,2,3\}=\{2,3,1\}$.

Γ DEFINITION Intersection and Union of Two Sets

If A and B are sets, the intersection of A with B, denoted $A \cap B$, is the set consisting of elements that belong to both A and B. The union of A with B, denoted $A \cup B$, is the set consisting of elements that belong to either A or B, or both.

EXAMPLE 2 Finding the Intersection and Union of Sets

Let $A=\{1,3,5,8\}, B=\{3,5,7\}$, and $C=\{2,4,6,8\}$. Find:
(a) $A \cap B$
(b) $A \cup B$
(c) $B \cap(A \cup C)$

Solution
(a) $A \cap B=\{1,3,5,8\} \cap\{3,5,7\}=\{3,5\}$
(b) $A \cup B=\{1,3,5,8\} \cup\{3,5,7\}=\{1,3,5,7,8\}$
(c) $B \cap(A \cup C)=\{3,5,7\} \cap[\{1,3,5,8\} \cup\{2,4,6,8\}]$

$$
=\{3,5,7\} \cap\{1,2,3,4,5,6,8\}=\{3,5\}
$$

```
Now Work problem 15
```

Usually, in working with sets, we designate a universal set U, the set consisting of all the elements that we wish to consider. Once a universal set has been designated, we can consider elements of the universal set not found in a given set.

\int DEFINITION Complement of a Set

If A is a set, the complement of A, denoted \bar{A}, is the set consisting of all the elements in the universal set that are not in A.*

EXAMPLE 3

Figure 1 Venn diagram

Figure 2

Finding the Complement of a Set

If the universal set is $U=\{1,2,3,4,5,6,7,8,9\}$ and if $A=\{1,3,5,7,9\}$, then $\bar{A}=\{2,4,6,8\}$.

It follows from the definition of complement that $A \cup \bar{A}=U$ and $A \cap \bar{A}=\varnothing$. Do you see why?

Now Work problem 19

It is often helpful to draw pictures of sets. Such pictures, called Venn diagrams, represent sets as circles enclosed in a rectangle, which represents the universal set. Such diagrams often help us to visualize various relationships among sets. See Figure 1.

If we know that $A \subseteq B$, we might use the Venn diagram in Figure 2(a). If we know that A and B have no elements in common-that is, if $A \cap B=\varnothing$-we might use the Venn diagram in Figure 2(b). The sets A and B in Figure 2(b) are said to be disjoint.

(a) $A \subseteq B$ subset

(b) $A \cap B=\varnothing$ disjoint sets

Figures 3(a), 3(b), and 3(c) use Venn diagrams to illustrate intersection, union, and complement, respectively.

2 Classify Numbers

It is helpful to classify the various kinds of numbers that we deal with as sets. The counting numbers, or natural numbers, are the numbers in the set $\{1,2,3,4, \ldots\}$. (The three dots, called an ellipsis, indicate that the pattern continues indefinitely.) As their name implies, these numbers are often used to count things. For example, there are 26 letters in our alphabet; there are 100 cents in a dollar. The whole numbers are the numbers in the set $\{0,1,2,3, \ldots\}$-that is, the counting numbers together with 0 . The set of counting numbers is a subset of the set of whole numbers.

DEFINITION Integers

The integers are the set of numbers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

These numbers are useful in many situations. For example, if your checking account has $\$ 10$ in it and you write a check for $\$ 15$, you can represent the current balance as $-\$ 5$.

Each time we expand a number system, such as from the whole numbers to the integers, we do so in order to be able to handle new, and usually more complicated, problems. The integers enable us to solve problems requiring both positive and negative counting numbers, such as profit/loss, height above/below sea level, temperature above/below $0^{\circ} \mathrm{F}$, and so on.

But integers alone are not sufficient for all problems. For example, they do not answer the question "What part of a dollar is 38 cents?" To answer such a question, we enlarge our number system to include rational numbers. For example, $\frac{38}{100}$ answers the question "What part of a dollar is 38 cents?"

「DEFINITION Rational Number

A rational number is a number that can be expressed as a quotient $\frac{a}{b}$ of two integers. The integer a is called the numerator, and the integer b, which cannot be 0 , is called the denominator. The rational numbers are the numbers in the set $\left\{x \left\lvert\, x=\frac{a}{b}\right.\right.$, where a, b are integers and $\left.b \neq 0\right\}$.

Examples of rational numbers are $\frac{3}{4}, \frac{5}{2}, \frac{0}{4},-\frac{2}{3}$, and $\frac{100}{3}$. Since $\frac{a}{1}=a$ for any integer a, it follows that the set of integers is a subset of the set of rational numbers.

Rational numbers may be represented as decimals. For example, the rational numbers $\frac{3}{4}, \frac{5}{2},-\frac{2}{3}$, and $\frac{7}{66}$ may be represented as decimals by merely carrying out the indicated division:
$\frac{3}{4}=0.75 \quad \frac{5}{2}=2.5 \quad-\frac{2}{3}=-0.666 \ldots=-0 . \overline{6} \quad \frac{7}{66}=0.1060606 \ldots=0.1 \overline{06}$
Notice that the decimal representations of $\frac{3}{4}$ and $\frac{5}{2}$ terminate, or end. The decimal representations of $-\frac{2}{3}$ and $\frac{7}{66}$ do not terminate, but they do exhibit a pattern of repetition. For $-\frac{2}{3}$, the 6 repeats indefinitely, as indicated by the bar over the 6 ; for $\frac{7}{66}$, the block 06 repeats indefinitely, as indicated by the bar over the 06 . It can be shown that every rational number may be represented by a decimal that either terminates or is nonterminating with a repeating block of digits, and vice versa.

On the other hand, some decimals do not fit into either of these categories. Such decimals represent irrational numbers. Every irrational number may be represented by a decimal that neither repeats nor terminates. In other words, irrational numbers cannot be written in the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$.

Irrational numbers occur naturally. For example, consider the isosceles right triangle whose legs are each of length 1 . See Figure 4 . The length of the hypotenuse is $\sqrt{2}$, an irrational number.

Also, the number that equals the ratio of the circumference C to the diameter d of any circle, denoted by the symbol π (the Greek letter pi), is an irrational number. See Figure 5.

Figure 4

Figure $5 \pi=\frac{c}{d}$

\int DEFINITION Real Numbers

The set of real numbers is the union of the set of rational numbers with the set of irrational numbers.

Figure 6 shows the relationship of various types of numbers.*

Figure 6

EXAMPLE 4 Classifying the Numbers in a Set

List the numbers in the set

$$
\left\{-3, \frac{4}{3}, 0.12, \sqrt{2}, \pi, 10,2.151515 \ldots(\text { where the block } 15 \text { repeats })\right\}
$$

that are
(a) Natural numbers
(b) Integers
(c) Rational numbers
(d) Irrational numbers
(e) Real numbers

Solution (a) 10 is the only natural number.
(b) -3 and 10 are integers.
(c) $-3,10, \frac{4}{3}, 0.12$, and $2.151515 \ldots$ are rational numbers.
(d) $\sqrt{2}$ and π are irrational numbers.
(e) All the numbers listed are real numbers.

```
Now Work problem 25
```

*The set of real numbers is a subset of the set of complex numbers. We discuss complex numbers in Chapter 1, Section 1.3.

Approximations

Every decimal may be represented by a real number (either rational or irrational), and every real number may be represented by a decimal.

In practice, the decimal representation of an irrational number is given as an approximation. For example, using the symbol \approx (read as "approximately equal to"), we can write

$$
\sqrt{2} \approx 1.4142 \quad \pi \approx 3.1416
$$

In approximating decimals, we either round or truncate to a given number of decimal places.* The number of places establishes the location of the final digit in the decimal approximation.

Truncation: Drop all of the digits that follow the specified final digit in the decimal.

Rounding: Identify the specified final digit in the decimal. If the next digit is 5 or more, add 1 to the final digit; if the next digit is 4 or less, leave the final digit as it is. Then truncate following the final digit.

EXAMPLE 5 Approximating a Decimal to Two Places

Approximate 20.98752 to two decimal places by
(a) Truncating
(b) Rounding

Solution For 20.98752, the final digit is 8 , since it is two decimal places from the decimal point.
(a) To truncate, we remove all digits following the final digit 8 . The truncation of 20.98752 to two decimal places is 20.98 .
(b) The digit following the final digit 8 is the digit 7 . Since 7 is 5 or more, we add 1 to the final digit 8 and truncate. The rounded form of 20.98752 to two decimal places is 20.99 .

EXAMPLE 6 Approximating a Decimal to Two and Four Places

	Rounded to Two Decimal Places	Rounded to Four Decimal Places	Truncated to Two Decimal Places	Truncated to Four Decimal Places
Number	3.14	3.1416	3.14	3.1415
(a) 3.14159	0.06	0.0561	0.05	0.0561
(b) 0.056128	893.46	893.4613	893.46	893.4612
(c) 893.46125	8			

Now Work problem 29

Calculators and Graphing Utilities

Calculators are incapable of displaying decimals that contain a large number of digits. For example, some calculators are capable of displaying only eight digits. When a number requires more than eight digits, the calculator either truncates or rounds.

[^0]To see how your calculator handles decimals, divide 2 by 3 . How many digits do you see? Is the last digit a 6 or a 7 ? If it is a 6 , your calculator truncates; if it is a 7 , your calculator rounds.

There are different kinds of calculators. An arithmetic calculator can only add, subtract, multiply, and divide numbers; therefore, this type is not adequate for this course. Scientific calculators have all the capabilities of arithmetic calculators and also contain function keys labeled $\ln , \log , \sin , \cos , \tan , x^{y}$, inv, and so on. As you proceed through this text, you will discover how to use many of the function keys. Graphing calculators have all the capabilities of scientific calculators and contain a screen on which graphs can be displayed. We use the term graphing utilities to refer generically to all graphing calculators and computer software graphing packages.

For those who have access to a graphing utility, we have included comments, examples, and exercises marked with a ${ }^{(1 n d i c a t i n g ~ t h a t ~ a ~ g r a p h i n g ~ u t i l i t y ~ i s ~ r e q u i r e d . ~}$ We have also included an appendix that explains some of the capabilities of graphing utilities. The 目comments, examples, and exercises may be omitted without loss of continuity, if so desired.

Operations

In algebra, we use letters such as x, y, a, b, and c to represent numbers. The symbols used in algebra for the operations of addition, subtraction, multiplication, and division are,,$+- \cdot$, and $/$.The words used to describe the results of these operations are sum, difference, product, and quotient. Table 1 summarizes these ideas.

Table 1

Operation	Symbol	Words
Addition	$a+b$	Sum: a plus b
Subtraction	$a-b$	Difference: a minus b
Multiplication	$a \cdot b,(a) \cdot b, a \cdot(b),(a) \cdot(b)$, $a b,(a) b, a(b),(a)(b)$	Product: a times b
Division	a / b or $\frac{a}{b}$	Quotient: a divided by b

In algebra, we generally avoid using the multiplication sign \times and the division sign \div so familiar in arithmetic. Notice also that when two expressions are placed next to each other without an operation symbol, as in $a b$, or in parentheses, as in (a) (b), it is understood that the expressions, called factors, are to be multiplied.

We also prefer not to use mixed numbers in algebra. When mixed numbers are used, addition is understood; for example, $2 \frac{3}{4}$ means $2+\frac{3}{4}$. In algebra, use of a mixed number may be confusing because the absence of an operation symbol between two terms is generally taken to mean multiplication. The expression $2 \frac{3}{4}$ is therefore written instead as 2.75 or as $\frac{11}{4}$.

The symbol =, called an equal sign and read as "equals" or "is," is used to express the idea that the number or expression on the left of the equal sign is equivalent to the number or expression on the right.

EXAMPLE 7
 Writing Statements Using Symbols

(a) The sum of 2 and 7 equals 9 . In symbols, this statement is written as $2+7=9$.
(b) The product of 3 and 5 is 15 . In symbols, this statement is written as $3 \cdot 5=15$.

In Words

Multiply first, then add.

3 Evaluate Numerical Expressions

Consider the expression $2+3 \cdot 6$. It is not clear whether we should add 2 and 3 to get 5 , and then multiply by 6 to get 30 ; or first multiply 3 and 6 to get 18 , and then add 2 to get 20 . To avoid this ambiguity, we have the following agreement.

We agree that whenever the two operations of addition and multiplication separate three numbers, the multiplication operation is always performed first, followed by the addition operation.

For $2+3 \cdot 6$, then, we have

$$
2+3 \cdot 6=2+18=20
$$

EXAMPLE 8 Finding the Value of an Expression

Evaluate each expression.
(a) $3+4 \cdot 5$
(b) $8 \cdot 2+1$
(c) $2+2 \cdot 2$

Solution
(a) $3+4 \cdot 5=3+20=23$
(b) $8 \cdot 2+1=16+1=17$
\uparrow
Multiply first.
\uparrow Multiply first.

EXAMPLE 9 Finding the Value of an Expression

(a) $(5+3) \cdot 4=8 \cdot 4=32$
(b) $(4+5) \cdot(8-2)=9 \cdot 6=54$

When we divide two expressions, as in

$$
\frac{2+3}{4+8}
$$

it is understood that the division bar acts like parentheses; that is,

$$
\frac{2+3}{4+8}=\frac{(2+3)}{(4+8)}
$$

Rules for the Order of Operations

1. Begin with the innermost parentheses and work outward. Remember that in dividing two expressions, we treat the numerator and denominator as if they were enclosed in parentheses.
2. Perform multiplications and divisions, working from left to right.
3. Perform additions and subtractions, working from left to right.

EXAMPLE 10 Finding the Value of an Expression

Evaluate each expression.
(a) $8 \cdot 2+3$
(b) $5 \cdot(3+4)+2$
(c) $\frac{2+5}{2+4 \cdot 7}$
(d) $2+[4+2 \cdot(10+6)]$

Solution (a) $8 \cdot 2+3=16+3=19$ \uparrow Multiply first.
(b) $5 \cdot(3+4)+2=5 \cdot 7+2=35+2=37$
$\begin{array}{cc}\uparrow & \uparrow \\ \text { Parentheses first } & \text { Multiply before adding. }\end{array}$
(c) $\frac{2+5}{2+4 \cdot 7}=\frac{2+5}{2+28}=\frac{7}{30}$
(d) $2+[4+2 \cdot(10+6)]=2+[4+2 \cdot(16)]$

$$
=2+[4+32]=2+[36]=38
$$

Be careful if you use a calculator. For Example 10(c), you need to use parentheses. See Figure 7.' If you don't, the calculator will compute the expression

$$
2+\frac{5}{2}+4 \cdot 7=2+2.5+28=32.5
$$

giving a wrong answer.
Now Nork Problems 59 and 67

4 Work with Properties of Real Numbers

An equal sign is used to mean that one expression is equivalent to another. Four important properties of equality are listed next. In this list, a, b, and c represent real numbers.

- The reflexive property states that a number equals itself; that is, $a=a$.
- The symmetric property states that if $a=b$, then $b=a$.
- The transitive property states that if $a=b$ and $b=c$, then $a=c$.
- The principle of substitution states that if $a=b$, then we may substitute b for a in any expression containing a.

Now, let's consider some other properties of real numbers.

EXAMPLE 11 Commutative Properties

(a) $3+5=8$
$5+3=8$
$3+5=5+3$
(b) $2 \cdot 3=6$
$3 \cdot 2=6$
$2 \cdot 3=3 \cdot 2$

This example illustrates the commutative property of real numbers, which states that the order in which addition or multiplication takes place does not affect the final result.

[^1]
[^0]: *Sometimes we say "correct to a given number of decimal places" instead of "truncate."

[^1]: *Notice that we converted the decimal to its fraction form. Another option, when using a TI-84 Plus C, is to use the fraction template under the MATH button to enter the expression as it appears in Example 10(c). Consult your manual to see how to enter such expressions on your calculator.

